Nombres complexes

I. Définitions

1. Ensemble des complexes

Définition 17.1

On suppose l'existence d'un nombre imaginaire, noté i, tel que $i^2 = -1$. Dans les calculs, on traite i comme une variable.

On définit l'ensemble des nombres complexes, noté \mathbb{C} , comme étant l'ensemble des nombres z s'écrivant sous la forme z = a + ib où a et b sont deux réels. L'écriture d'un nombre complexe sous cette forme s'appelle la **forme** algébrique.

a s'appelle alors la partie réelle de z et b s'appelle la partie imaginaire de z. On note $a = \Re(z)$ et $b = \Im(z)$.

Exemple 17.1

- z = 3 2i est un nombre complexe, $\Re(z) = 3$ et $\Im(z) = -2$.
- z = 4 est un nombre complexe, $\Re(z) = 4$ et $\Im(z) = 0$
- z = 3i est un nombre complexe, $\Re(z) = 0$ et $\Im(z) = 3$.

Propriété 17.1 (admise)

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire :

$$\forall (z,z') \in \mathbb{C}^2, \quad z=z' \iff \left\{ \begin{array}{l} \Re(z) = \Re(z') \\ \Im(z) = \Im(z') \end{array} \right.$$

En particulier, z = 0 si et seulement si $\Re(z) = \Im(z) = 0$.

Remarque

L'ensemble \mathbb{C} est donc un \mathbb{R} -espace vectoriel de dimension 2, la famille (1, i) en est une base

Définition 17.2

Soit z = a + ib un nombre complexe.

- z est un nombre réel si et seulement si $\Im(z) = 0$. Puisque tout nombre réel est aussi un nombre complexe, on peut écrire $\mathbb{R} \subset \mathbb{C}$.
- Si $\Re(z) = a = 0$, on dit que z est un **nombre imaginaire pur**. On note $i\mathbb{R} = \{ib \mid b \in \mathbb{R}\}$ l'ensemble des imaginaires purs

2. Opérations

a. Somme et produit

Les règles d'addition et de multiplication sur les complexes sont les mêmes que pour les réels, on traite i comme une variable en simplifiant les i^2 en -1.

Propriété 17.2

La somme de deux nombres complexes est un nombre complexe, le produit de deux nombres complexes est un nombre complexe. Plus précisément, si z = a + ib et z' = a' + ib' sont deux nombres complexes, avec $a, a', b, b' \in \mathbb{R}$, on a

- (a+ib)+(a'+ib')=(a+a')+(b+b')i
- $(a+ib) \times (a'+ib') = (aa'-bb') + (ab'+a'b)i$
- → Exercice de cours nº 1.

Propriété 17.3

Le produit de deux nombres complexes z et z' est nul si et seulement si l'un de ces nombres est nul :

$$zz' = 0 \iff z = 0$$
 ou $z' = 0$

Remarque

On peut donc utiliser toutes les règles de calcul connues sur les réels avec les nombres complexes **mais** il n'existe pas d'ordre sur $\mathbb C$ qui soit compatible avec ces règles de calcul.

En effet, les suppositions i < 0 et i > 0 amènent toutes les deux à des contradictions :

$$i < 0 \Rightarrow i^2 > 0 \Rightarrow -1 > 0 \Rightarrow i > 0$$
 (en multipliant à la fin par $-i$ qui est positif)

$$i > 0 \Rightarrow i^2 > 0 \Rightarrow -1 > 0 \Rightarrow i < 0$$
 (en multipliant à la fin par $-i$ qui est négatif)

Remarque

• L'ensemble $\mathbb C$ muni de l'addition et de la multiplication définie ci-dessus peut être défini comme étant l'ensemble $\mathbb R^2$ muni des opérations

$$\forall ((a,b),(a',b')) \in (\mathbb{R}^2)^2$$
, $(a,b)+(a',b')=(a+a',b+b')$ et $(a,b)\times(a',b')=(aa'-bb',ab'+a'b)$

le nombre i est alors défini comme étant l'élément (0,1) de cet ensemble, et tout nombre réel a est associé à l'élément (a,0).

• La matrice $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ vérifie $J^2 = -I$. L'ensemble des nombres complexes peut être défini comme étant l'ensemble

$$\{aI + bJ \mid (a, b) \in \mathbb{R}^2\}$$

muni des opérations habituelles sur les matrices. Le nombre i est alors associé à la matrice J et tout nombre réel a est associé à la matrice aI.

b. Identités remarquables

Propriété 17.4

Soient z_1 et z_2 deux nombres complexes, alors :

•
$$(z_1 + z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2$$

•
$$(z_1 + iz_2)^2 = z_1^2 + 2iz_1z_2 - z_2^2$$

•
$$(z_1 - z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$$

•
$$(z_1 - iz_2)^2 = z_1^2 - 2iz_1z_2 - z_2^2$$

•
$$(z_1 + z_2)(z_1 - z_2) = z_1^2 - z_2^2$$

•
$$(z_1 + iz_2)(z_1 - iz_2) = z_1^2 + z_2^2$$

Formule du binôme de Newton, pour tout entier *n* on a :

$$(z_1+z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k} = \binom{n}{0} z_2^n + \binom{n}{1} z_1 z_2^{n-1} + \binom{n}{2} z_1^2 z_2^{n-2} + \dots + \binom{n}{n-2} z_1^{n-2} z_2^2 + \binom{n}{n-1} z_1^{n-1} z_2 + \binom{n}{n} z_1^n z_2^n + \dots + \binom{n}{n-2} z_1^{n-2} z_2^n z_2^n + \dots + \binom{n}{n-2} z_1^{n-2} z_2^n z_2^n z_2^n z_2^n z_2^n + \dots + \binom{n}{n-2} z_1^{n-2} z_2^n z_$$

c. Conjugué

Remarque

Si $a, b \in \mathbb{R}$, alors $(a+ib) \times (a-ib) = a^2 + b^2 \in \mathbb{R}_+$.

Définition 17.3

Le **conjugué** d'un nombre complexe z = a + ib, est le nombre complexe noté \overline{z} , défini par :

$$\overline{z} = a - ib$$

Propriété 17.5

Pour tout nombre complexe z = a + ib, on a $z\overline{z} = a^2 + b^2$ donc $z\overline{z} \in \mathbb{R}_+$.

d. Inverse

Propriété 17.6

Si $z \in \mathbb{C}$, on appelle **inverse** de z tout nombre complexe z' tel que $z \times z' = 1$. Tout nombre complexe z non nul possède un unique inverse que l'on note $\frac{1}{z}$

- → Exercice de cours nº 2.
- → Exercice de cours nº 3.

Définition 17.4

Pour tout $(z, z') \in \mathbb{C} \times \mathbb{C}^*$, on définit le quotient de z par z', noté $\frac{z}{z'}$ par :

$$\frac{z}{z'} = z \times \frac{1}{z'}$$

Remarque

En pratique, on multiplie au numérateur et au dénominateur par le conjugué du dénominateur.

→ Exercice de cours nº 4.

Remarque

Tout complexe a un opposé pour l'addition et un inverse pour la multiplication, on dit que ℂ est un corps (commutatif).

L'enemble des réels et l'ensemble $\mathbb Q$ des nombres rationnels sont aussi des corps. L'ensemble $\mathbb Z$ des entiers relatifs n'est pas un corps.

Si \mathbb{K} est un corps, on note $\mathcal{M}_{n,m}(\mathbb{K})$ l'ensemble des matrices de taille $n \times m$ à coefficients dans \mathbb{K}

3. Propriétés du conjugué

Propriété 17.7 -

Pour tout nombre complexe z, on a:

• $\overline{\overline{z}} = z$

• $z - \overline{z} = 2i\Im(z)$

• $z\overline{z} = |z|^2$

• z est réel si et seulement si $z = \overline{z}$

• $z + \overline{z} = 2\Re(z)$

• z est imaginaire pur si et seulement si $z = -\overline{z}$

Remarque

On en déduit que pour tout nombre complexe z,

$$\Re(z) = \frac{z + \overline{z}}{2}$$
 et $\Im(z) = \frac{z - \overline{z}}{2}$

Propriété 17.8

Quel que soit $z, z' \in \mathbb{C}$, on a

 $\bullet \ \overline{z+z'}=\overline{z}+\overline{z'}$

• $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$

• $\overline{zz'} = \overline{z}\overline{z'}$

• $\forall n \in \mathbb{N}$. $\overline{z^n} = \overline{z}^n$

• $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$

 \rightarrow Exercice de cours nº 5.

II. Équation du second degré

Dans la première partie, on a vue que 2i et (-2i) étaient solution de l'équation $x^2 = -4$. De façon générale :

Propriété 17.9

L'équation $x^2 = a$ où a < 0 admet deux solutions complexes : $x_1 = i\sqrt{-a}$ et $x_2 = -i\sqrt{-a}$

Exemple 17.2

L'équation $x^2 = -25$ admet deux solutions : $x_1 = i\sqrt{5}$ et $x_2 = -i\sqrt{5}$

Propriété 17.10 -

On considère l'équation $az^2 + bz + c = 0$, où a, b et c sont des nombres réels. On pose $\Delta = b^2 - 4ac$.

• Si $\Delta > 0$, l'équation admet deux solutions **réelles** :

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

• Si $\Delta = 0$, l'équation admet une unique solution

$$z_0 = \frac{-b}{2a}$$

• Si Δ < 0, l'équation admet deux solutions **complexes** :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

 \rightarrow Exercice de cours nº 6.

Propriété 17.11

Si $P(z) = az^2 + bz + c$ est un polynôme de degré 2 qui admet deux racines distinctes (réelles ou complexes) z_1 et z_2 , alors

$$\forall z \in \mathbb{C}, \quad P(z) = a(z - z_1)(z - z_2)$$

Si P n'a qu'une seule racine z_0 , alors

$$\forall z \in \mathbb{C}, \quad P(z) = a(z - z_0)^2$$

 \rightarrow Exercice de cours nº 7.

Remarque

Les racines complexes d'un polynôme de degré 2 sont conjuguées l'une de l'autre :

$$\frac{-b - i\sqrt{\Delta}}{2a} = \frac{-b + i\sqrt{\Delta}}{2a}$$

De façon plus générale, on a la proposition suivante :

Proposition 17.12

Soit $n \in \mathbb{N}$ et soit P un polynôme de degré n à coefficients réels. Si λ est une racine complexe de P, alors $\overline{\lambda}$ aussi.

III. Le plan complexe

1. Définition

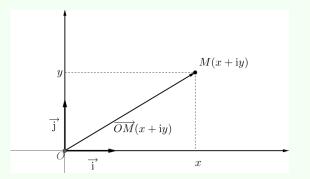
Définition 17.5

On considère le plan muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

À tout nombre complexe z = x + iy avec $x, y \in \mathbb{R}$, on associe

- le point M(z) de coordonnées (x, y)
- le vecteur $\overrightarrow{\mathbf{u}}(z)$ de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$.

On dit alors que z est l'**affixe** de M(z) et de $\overrightarrow{\mathrm{u}}(z)$.



Réciproquement, à tout point du plan correspond un unique nombre complexe et à tout vecteur du plan correspond un unique nombre complexe.

- Si M est un point, on note z_M l'affixe de M
- Si \overrightarrow{u} est un vecteur, on note $z_{\overrightarrow{u}}$ l'affixe de \overrightarrow{u}

On appelle alors l'axe (O, \overrightarrow{i}) l'axe des réels et l'axe (O, \overrightarrow{j}) l'axe des imaginaires purs.

2. Propriétés immédiates

On peut ainsi traduire quelques propriétés de géométrie repérée à l'aide des complexes :

Propriété 17.13

- Deux points du plan sont confondus si et seulement si ils ont la même affixe.
- Deux vecteurs sont égaux si et seulement si ils ont la même affixe.
- Si A et B sont deux points d'affixes z_A et z_B , alors \overrightarrow{AB} a pour affixe $z_B z_A$.
- Si A et B sont deux points d'affixe z_A et z_B , alors le milieu I de [AB] a pour affixe $\frac{z_A + z_B}{2}$.
- Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs d'affixe $z_{\overrightarrow{u}}$ et $z_{\overrightarrow{v}}$, alors $\overrightarrow{u} + \overrightarrow{v}$ a pour affixe $z_{\overrightarrow{u}} + z_{\overrightarrow{v}}$.
- Si \overrightarrow{u} a pour affixe $z_{\overrightarrow{u}}$ et que k est un réel, alors $k \overrightarrow{u}$ a pour affixe $kz_{\overrightarrow{u}}$.

Remarque

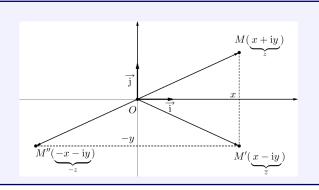
Deux vecteurs $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ sont colinéaires si et seulement si il existe un réel k tel que $\overrightarrow{\mathbf{u}} = k \overrightarrow{\mathbf{v}}$ ou $\overrightarrow{\mathbf{v}} = k \overrightarrow{\mathbf{u}}$. On peut donc déterminer si deux vecteurs sont colinéaires en étudiant leurs affixes : $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ sont colinéaires si et seulement si il existe un **réel** k tel que $z_{\overrightarrow{\mathbf{u}}} = k z_{\overrightarrow{\mathbf{v}}}$ ou $z_{\overrightarrow{\mathbf{v}}} = k z_{\overrightarrow{\mathbf{u}}}$.

- → Exercice de cours nº 8.
- → Exercice de cours nº 9.

Propriété 17.14 (admise)

Soit $z \in \mathbb{C}$ un nombre complexe et M(z) le point du plan complexe d'affixe z.

- Le symétrique de M par rapport à l'axe des réels a pour affixe \overline{z}
- Le symétrique de M par rapport à l'origine O du repère a pour affixe -z.



3. Module

Définition 17.6

On appelle **module** d'un nombre complexe z = a + ib la distance de M(z) à l'origine O du repère. On note

$$|z| = OM = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$$

Remarque

Le module étend la notion de valeur absolue à l'ensemble des complexes : si z est réel, alors

$$\underbrace{|z|}_{\text{module}} = \sqrt{\Re(z)^2} = \underbrace{|z|}_{\text{valeur absolue}}$$

Propriété 17.15 –

Si *A* a pour affixe z_A et *B* a pour affixe z_B , alors $AB = |z_B - z_A|$.

4. Propriétés du module

Propriété 17.16 –

Quel que soit $z, z' \in \mathbb{C}$, on a

•
$$|zz'| = |z| \times |z'|$$

$$\bullet \ \left| \frac{1}{z} \right| = \frac{1}{|z|}$$

$$\bullet \left| \frac{z}{z} \right| = \frac{|z|}{z}$$

•
$$|z^n| = |z|^n$$
, $\forall n \in \mathbb{Z}$.

•
$$|z+z'| \le |z| + |z'|$$
 avec égalité si et seulement si $z = \lambda z'$ avec $\lambda \in \mathbb{R}_+$.

$$\bullet \ \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

Exemple 17.3

Calculer le module des nombres suivants :

•
$$z_1 = (3+i)(1-2i)$$

•
$$z_2 = \frac{-6 - 7i}{1 + i}$$

•
$$z_3 = (\sqrt{2} + \sqrt{7}i)^4$$

IV. Forme trigonométrique

1. Argument

Définition 17.7

On assimile le plan complexe à un plan muni d'un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$. Soit z = x + iy un nombre complexe non nul et M le point du plan d'affixe z. Un **argument** de z est une mesure en radians de l'angle orienté $(\overrightarrow{\mathbf{u}}; \mathbf{OM}).$

Remarque

On dit **un** argument car l'angle orienté $(\overrightarrow{u}, \overrightarrow{OM})$ n'est pas défini de façon unique, il est défini à un multiple de 2π

Remarque

Un point M du plan est déterminé de façon unique par la longueur OM et l'angle (\overrightarrow{u}, OM) Si θ est un argument de z, il existe donc un lien entre (x; y) et $(|z|; \theta)$, que l'on va explorer dans la section suivante.

2. Forme trigonométrique

Soit z = x + iy un nombre complexe, et M le point du plan d'affixe z. Soit θ un argument de z et soit N le point du cercle trigonométrique tel que $\overrightarrow{OM} = |z|\overrightarrow{ON}$. N a le même argument que M donc l'affixe de N est :

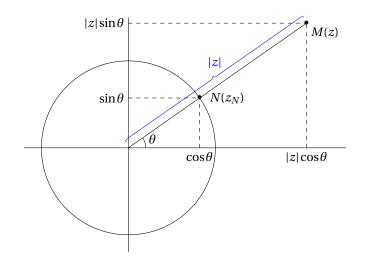
$$z_N = \cos(\theta) + i\sin(\theta)$$

On en déduit que $z_M = |z|(\cos(\theta) + i\sin(\theta))$, ainsi :

$$z_M = |z|\cos(\theta) + i|z|\sin(\theta)$$

On a donc $x = |z|\cos(\theta)$ et $y = |z|\sin(\theta)$. On en déduit le système suivant :

$$\begin{cases}
\cos(\theta) &= \frac{x}{\sqrt{x^2 + y^2}} \\
\sin(\theta) &= \frac{y}{\sqrt{x^2 + y^2}}
\end{cases}$$



Définition 17.8

L'écriture d'un nombre complexe z peut s'écrire sous la forme

$$z = r(\cos(\theta) + i\sin(\theta))$$

où $r \in]0; +\infty[$ et $\theta \in \mathbb{R}$. Cette écriture est appelée **forme trigonométrique de** z. On a alors r = |z| et $\arg(z) = \theta + 2k\pi$, $k \in \mathbb{Z}$.

Propriété 17.17

Soit $z \in \mathbb{C}$, et soit θ un argument de z. Alors

$$\cos \theta = \frac{\Re(z)}{|z|}$$
 et $\sin \theta = \frac{\Im(z)}{|z|}$

Propriété 17.18

Soit z et z' deux nombres complexes. Soient θ un argument de z et θ' un argument de z'. Alors z et z' sont égaux si et seulement si |z| = |z'| et s'il existe $k \in \mathbb{Z}$ tel que $\theta = \theta' + 2k\pi$.

3. Passage d'une forme à une autre

Exemple 17.4

Le nombre z de module 3 et d'argument $\frac{5\pi}{6}$ s'écrit sous forme algébrique :

$$z = 3\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = 3\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\frac{3\sqrt{3}}{2} + \frac{3}{2}i$$

Exemple 17.5

Pour écrire sous forme trigonométrique le nombre $z = 1 + i\sqrt{3}$, on commence par calculer son module :

$$|z| = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2$$

Ensuite, en notant θ un argument de z. On sait que $\cos(\theta) = \frac{\Re(z)}{|z|} = \frac{1}{2}$ et $\sin(\theta) = \frac{\Im(z)}{|z|} = \frac{\sqrt{3}}{2}$, donc on peut prendre $\theta = \frac{\pi}{3}$. Finalement

$$z = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

- → Exercice de cours nº 10.
- → Exercice de cours nº 11.
- → Exercice de cours nº 12.

4. Propriétés de l'argument

Propriété 17.19

Soit z un nombre complexe. On note arg(z) un argument de z.

- z est un réel si et seulement si $arg(z) = 0 + k\pi$, avec $k \in \mathbb{Z}$.
- z est un imaginaire pur si et seulement si $\arg(z) = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

Remarque

- $\arg(z) = 0 + k\pi$ signifie que $\arg(z)$ peut être égal à $0, \pi, 2\pi, 3\pi$, etc... ou $-\pi, -2\pi, -3\pi$, etc...
- $\arg(z) = \frac{\pi}{2} + k\pi$ signifie que $\arg(z)$ peut être égal à $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, etc... ou $-\frac{\pi}{2}$, $-\frac{3\pi}{2}$, etc...

Propriété 17.20 -

Soit z un nombre complexe, alors

- $arg(-z) = arg(z) + \pi + 2k\pi$ avec $k \in \mathbb{Z}$
- $arg(\overline{z}) = -arg(z) + 2k\pi$ avec $k \in \mathbb{Z}$

Propriété 17.21

Soient z et z' deux nombres complexes. Alors

(i)
$$arg(zz') = arg(z) + arg(z') + 2k\pi$$
 avec $k \in \mathbb{Z}$

(ii)
$$\arg(\frac{z}{z'}) = \arg(z) - \arg(z') + 2k\pi$$
 avec $k \in \mathbb{Z}$

(iii)
$$arg(z^n) = n arg(z) + 2k\pi$$
 avec $k \in \mathbb{Z}$, pour tout $n \in \mathbb{Z}$

5. Interprétations géométriques

Remarque

Multiplier z par un nombre complexe de module r>0 et d'argument $\theta\in\mathbb{R}$ donne le nombre complexe revient à appliquer à M(z) une rotation de centre O et d'angle θ puis à appliquer une homothétie de centre O et de rapport r. En effet, si z' est le nombre complexe de module r et d'argument θ alors

$$|zz'| = |z|z'$$
 et $\arg(zz') = \arg(z) + \arg(z') + 2k\pi$, $k \in \mathbb{Z}$

Propriété 17.22

Soient A et B deux points du plan complexe d'affixes respectives z_A et z_B .

Alors une mesure de l'angle $(\overrightarrow{u}; \overrightarrow{AB})$ est $arg(z_B - z_A)$

On en déduit la propriété suivante :

Propriété 17.23

Soient A, B, C et D quatre points du plan complexe d'affixes respectives z_A , z_B , z_C et z_D .

Alors une mesure de l'angle (\overrightarrow{AB} ; \overrightarrow{CD}) est arg $\left(\frac{z_D - z_C}{z_B - z_A}\right)$

V. Notation exponentielle

1. Définition

Définition 17.9

Soit $\theta \in \mathbb{R}$. On définit le nombre complexe $e^{i\theta}$ par :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Remarque

- $e^{i\theta}$ est un nombre complexe de module 1, son image est sur le cercle trigonométrique.
- Cette définition est cohérente avec la propriété selon laquelle $\arg(zz') = \arg(z) + \arg(z')$, car cela se traduit par $e^{i\theta} \times e^{i\theta'} = e^{i(\theta+\theta')}$
- → Exercice de cours nº 13.

Propriété 17.24 (valeurs remarquables)

- $e^{i0} = 1$
- $e^{i\frac{\pi}{2}} = i$
- $e^{i\pi} = -1$ (parfois écrit $e^{i\pi} + 1 = 0$)
- $e^{-\frac{i\pi}{2}} = e^{\frac{3i\pi}{2}}$

On déduit des propriétés de l'argument les propriétés suivantes :

Propriété 17.25

- $|e^{i\theta}| = 1$
- $arg(e^{i\theta}) = \theta$
- $e^{i(\theta+\theta')} = e^{i\theta} \times e^{i\theta'}$
- $e^{-i\theta} = \frac{1}{e^{i\theta}} = \overline{e^{i\theta}}$

- $e^{i(\theta-\theta')} = \frac{e^{i\theta}}{e^{i\theta'}}$
- $e^{i\theta} = e^{i\theta'} \iff \theta = \theta' + 2k\pi, k \in \mathbb{Z}$
- $(e^{i\theta})^n = e^{in\theta}$
- Formule de Moivre : $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

Propriété 17.26

On déduit de la définition de l'exponentielle les égalités suivantes :

$$\cos \theta = \Re(e^{i\theta})$$
 et $\sin \theta = \Im(e^{i\theta})$

Ou encore les égalités suivantes :

$$\forall \theta \in \mathbb{R}, \quad \cos \theta = \frac{\mathrm{e}^{i\theta} + \mathrm{e}^{-i\theta}}{2} \quad \text{et} \quad \sin \theta = \frac{\mathrm{e}^{i\theta} - \mathrm{e}^{-i\theta}}{2i}$$

- → Exercice de cours nº 14.
- → Exercice de cours nº 15.

2. Forme exponentielle

Proposition 17.27

Tout nombre complexe peut s'écrire sous la forme $z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}$ avec $\rho \in [0, +\infty[$ et $\theta \in \mathbb{R}$. De plus, $\rho = |z|$ et $\theta = \arg(z)[2\pi]$.

Exemple 17.6

Le nombre $z = 1 + \sqrt{3}i$ s'écrit sous forme exponentielle

$$z = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}) = 2e^{i\pi/3}$$

Exemple 17.7

Le nombre $z=-3e^{-i\frac{\pi}{2}}$ n'est pas sous forme exponentielle car -3<0. Comme $e^{i\pi}=-1$ on peut écrire $-3=3e^{i\pi}$, et donc $z=3e^{i\pi}e^{-i\frac{\pi}{2}}=3e^{i(\pi-\pi/2)}=3e^{i\pi/2}$

Remarque

Si $z = r e^{i\theta}$ est sous forme exponentielle, alors $\overline{z} = r e^{-i\theta}$.

VI. Retour sur les suites récurrentes linéaires d'ordre 2

On rappelle la définition d'une suite récurrente linéaire d'ordre 2 :

Définition 17.10

Une suite (u_n) est dite **récurrente linéaire d'ordre 2** s'il existe deux réels a et b tels que pour tout $n \in \mathbb{N}$,

$$u_{n+2} = au_{n+1} + bu_n$$

Si u_0 et u_1 sont donnés, une telle suite (u_n) est définie de façon unique. On appelle alors **équation caractéristique** de (u_n) l'équation $r^2 = ar + b$.

et la proposition concernant le terme général d'une telle suite :

Proposition 17.28

Soit (u_n) une suite récurrente linéaire d'ordre 2 d'équation caractéristique (E): $r^2 = ar + b$. On distingue trois cas:

• Si (E) admet deux solution réelles distinctes r_1 et r_2 , alors il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r_1^n + \mu r_2^n$$

• Si (E) admet une solution double r_0 , alors il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r_0^n + \mu n r_0^n$$

• L'équation caractéristique n'admet aucune solution réelle. Elle admet donc deux solutions complexes conjuguées, $z_1 = r e^{i\alpha}$ et $z_2 = r e^{-i\alpha}$. Il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r^n \cos(n\alpha) + \mu r^n \sin(n\alpha)$$

En pratique, dans chaque cas, on trouve la valeur de λ et μ à l'aide des valeurs de u_0 et u_1 .

→ Exercice de cours nº 16.

VII. Racines n-ième de l'unité

1. Définition

Définition 17.11

Soit $n \in \mathbb{N}^*$. On appelle **racine n-ième de l'unité** tout nombre complexe z tel que $z^n = 1$.

Exemple 17.8

Les nombres 1, i, (-1) et -i sont des racines 4-ièmes de l'unité. En effet $1^4 = 1$, $(i)^4 = (-1)^2 = 1$, $(-1)^4 = 1^2 = 1$, et $(-i)^4 = i^4 = 1$.

2. Un théorème

Théorème 17.29

Soit $n \in \mathbb{N}^*$. Il existe exactement n racines n-ièmes de l'unité. Si on note U_n l'ensemble des racines n-ièmes de l'unité, on a

$$U_n = \left\{ \xi_k = e^{\frac{2ik\pi}{n}}, \quad k \in [0, n-1] \right\}$$

Exemple 17.9

Les racines 3-ième de l'unité sont 1, $e^{2i\pi/3}$, et $e^{4i\pi/3} = e^{-2i\pi/3}$.

Remarque

Soit $n \in \mathbb{N}^*$. Les points dont les affixes sont les racines n-ième de l'unité forment un polygône régulier à n côtés inscrit dans le cercle trigonométrique.

3. Applications

Propriété 17.30 -

Soit
$$n \in \mathbb{N}^*$$
 et soit $\xi_1 = \mathrm{e}^{\frac{2i\pi}{n}}$. Alors $U_n = \{\xi_1^k, k \in [\![0,n-1]\!]\}$

Cette propriété découle immédiatement du fait que $\xi_1^k = \left(e^{2i\pi/n}\right)^k = e^{\frac{2ik\pi}{n}} = \xi_k$

Propriété 17.31

Soit $c \in \mathbb{C}^*$ un nombre complexe non nul. L'équation $z^n = c$ a exactement n solutions dans \mathbb{C} , données par

$$S = \{ \sqrt[n]{|c|} e^{\frac{\theta + 2ik\pi}{n}}, k \in [0, n-1] \}$$

 $\operatorname{avec}\theta=\operatorname{arg}(c).$

Exercices de cours

- Exercice 1 -

Écrire les nombres suivants sous forme algébrique :

a)
$$z_1 = (2+2i) \times (5-3i)$$
 b) $z_2 = i(i+1)(i+2)$ c) $z_3 = (2-2i)(2+2i)$ d) $z_4 = (\sqrt{3}+i)^6$

b)
$$z_2 = i(i+1)(i+2)$$

c)
$$z_3 = (2-2i)(2+2i)$$

d)
$$z_4 = (\sqrt{3} + i)^6$$

— Exercice 2 ——

Mettre sous forme algébrique le nombre $z = \frac{1}{3+2i}$

Exercice 3

Déterminer l'inverse du nombre i.

Exercice 4 -

Écrire sous forme algébrique les nombre suivants

1.
$$\frac{3+2i}{1+i}$$

2.
$$\frac{1-i}{3i}$$

— Exercice 5 —

Calculer de deux façon différentes le conjugué des nombres suivants :

•
$$z_1 = (2 - i)(3 + 5i)$$

•
$$z_2 = \frac{3}{1-i}$$

•
$$z_3 = (1+4i)^2$$

Exercice 6

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 + 2z + 2 = 0$$

2.
$$-4z^2 + 4z - 5 = 0$$

3.
$$5z^2 + 45 = 0$$

Exercice 7 -

Factoriser dans \mathbb{R} puis dans \mathbb{C} les polynômes suivant :

a)
$$f(z) = z^3 + z^2 - 2$$

b)
$$g(z) = z^3 + z^2 + z + 1$$
 c) $h(z) = z^3 - 2z^2 + z - 2$

c)
$$h(z) = z^3 - 2z^2 + z - 2$$

- Exercice 8 —

Soient A, B, C, D quatre points d'affixe respective $z_A = -2 - i$, $z_B = 1 - 5i$, $z_C = 7 - 2i$ et $z_D = 4 + 2i$. Montrer que ABCD est un parallélogramme et que O, A et D sont alignés.

——— Exercice 9 —

Soient A, B et C trois points du plan complexe d'affixes z_A , z_B et z_C . Pour tout réels strictement positifs (a, b, c), on définit le barycentre du triangle pondéré de sommets (A, a), (B, b) et (C, c) comme étant le point M vérifiant $\overrightarrow{aMA} + \overrightarrow{bMB} + \overrightarrow{cMC} = \overrightarrow{0}$.

Montrer que l'affixe z de M est $z = \frac{az_A + bz_B + cz_C}{a+b+c}$

- Exercice 10 -

Écrire sous forme trigonométrique le nombre z = 5 - 5i.

—— Exercice 11 —

Expliquer pourquoi $z = 5(\cos(\frac{\pi}{3} + i\sin\frac{\pi}{6})$ n'est pas sous forme trigonométrique, et l'écrire sous forme trigonométrique.

_____ Exercice 12 ____

Expliquer pourquoi $z = -6\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$ n'est pas sous forme trigonométrique, puis l'écrire sous forme trigonométrique

—— Exercice 13 ———

Pour tout nombre complexe z = a + ib, on définit e^z par $e^{a+ib} = e^a e^{ib}$. Montrer que la fonction $f : \mathbb{C} \to \mathbb{C}^*$, $z \mapsto e^z$ est surjective.

—— Exercice 14 ———

En exprimant de deux façons différentes les parties réelles et imaginaires de $(e^{i\theta})^2$, retrouver les égalités

$$cos(2\theta) = cos^2 \theta - sin^2 \theta$$
 et $sin(2\theta) = 2 sin \theta cos \theta$

- Exercice 15 -

Calculer la somme suivante :

$$S = \sum_{k=0}^{n} \binom{n}{k} \cos(x + ky)$$

Exercice 16 -

Déterminer le terme général de la suite définie par $u_0 = 1$, $u_1 = 2$, et pour tout $n \in \mathbb{N}$

$$u_{n+2} = 2u_{n+1} - 4u_n$$

